Credit rating with a monotonicity-constrained support vector machine model
نویسندگان
چکیده
Deciding whether borrowers can fulfill their obligations is a major issue for financial institutions, and while various credit rating models have been developed to help achieve this, they cannot reflect the domain knowledge of human experts. This paper proposes a new rating model based on a support vector machine with monotonicity constraints derived from the prior knowledge of financial experts. Experiments conducted on real-world data sets show that the proposed method, not only data driven but also domain knowledge oriented, can help correct the loss of monotonicity in data occurring during the collecting process, and performs better than the conventional counterpart. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Support vector machines in ordinal classification
Risk assessment of credit portfolios is of pivotal importance in the banking industry. The bank that has the most accurate view of its credit risk will be the most profitable. One of the main pillars in assessing credit risk is the estimated probability of default of each counterparty, i.e., the probability that a counterparty cannot meet its payment obligations in the horizon of one year. A cr...
متن کاملA Corporate Credit Rating Model Using Support Vector Domain Combined with Fuzzy Clustering Algorithm
Corporate credit-rating prediction using statistical and artificial intelligence techniques has received considerable attentions in the literature. Different from the thoughts of various techniques for adopting support vector machines as binary classifiers originally, a new method, based on support vector domain combined with fuzzy clustering algorithm for multiclassification, is proposed in th...
متن کاملA study of Taiwan's issuer credit rating systems using support vector machines
By providing credit risk information, credit rating systems benefit most participants in financial markets, including issuers, investors, market regulators and intermediaries. In this paper, we propose an automatic classification model for issuer credit ratings, a type of fundamental credit rating information, by applying the support vector machine (SVM) method. This is a novel classification a...
متن کاملMulticlass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector mac...
متن کاملGenetic Algorithms for the Optimization of Support Vector Machines in Credit Risk Rating
The assessment of credit risk usually involves the development of rating models that classify credit applicants (firms or individuals) into predefined risk groups. A plethora of methodologies have been proposed to develop such rating models. Among them support vector machines (SVMs) have rapidly evolved in statistical learning theory as new modeling technique for developing classification model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014